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Multivariate Normality based Relevance Estimation
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Joint Subspace construction
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CASE 1: Residuals follow normal distribution CASE 2: Residuals deviate from normality
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Results

Data sets:    
Colorectal carcinoma (CRC)             [307 samples, 2 clusters]
Cervical carcinoma (CESC)               [124 samples, 3 clusters]
Lower grade glioma (LGG)             [267 samples, 3 clusters]
Stomach adenocarcinoma (STAD)   [199 samples, 4 clusters]

Modalities:  DNA Methylation
                Gene Expression

          Micro-RNA Expression
          Protein Expression



  

Results

Importance of Noise-Free Approximation 
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 Performance of selected proposed joint subspace is better than taking full-
rank subspace from each modality



  

Results

Importance of Integration
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 Proposed method performs better than all the individual modalities in all 4 data sets

 Very high performance for LGG and STAD data sets



  

Results
Comparison with Existing Approaches
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 Performance of proposed better than existing in all data sets, especially for STAD data set

 PCA and SNF have next best  performance



  

Conclusion

● Statistical hypothesis testing to estimate rank of subspaces

● Multivariate Normality based relevance of individual modalities

● Select only relevant modalities

● Select only complementary information between two modalities

A. Khan and P. Maji, "Low-Rank Joint Subspace Construction for Cancer Subtype Discovery," 
IEEE/ACM Transactions on Computational Biology and Bioinformatics. (Accepted)
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