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Joint Subspace construction

Statistical hypothesis testing based Rank Estimation
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Joint Subspace construction
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Multivariate Normality based Relevance Estimation
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Joint Subspace construction

joint basis
Uz = [U] T3]
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Joint Subspace construction
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Data sets:

Colorectal carcinoma (CRC) (307 samples, 2 clusters
Cervical carcinoma (CESC) (124 samples, 3 clusters]
Lower grade glioma (LGG) 267 samples, 3 clusters]
Stomach adenocarcinoma (STAD) [199 samples, 4 clusters]

Modalities: DNA Methylation
Gene Expression
Micro-RNA Expression
Protein Expression



Importance of Noise-Free Approximation
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* Performance of selected proposed joint subspace is better than taking full-
rank subspace from each modality




Importance of Integration
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* Proposed method performs better than all the individual modalities in all 4 data sets

» Very high performance for LGG and STAD data sets




Comparison with Existing Approaches
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* Performance of proposed better than existing in all data sets, especially for STAD data set

* PCA and SNF have next best performance




Conclusion

« Statistical hypothesis testing to estimate rank of subspaces

e Multivariate Normality based relevance of individual modalities

* Select only relevant modalities

e Select only complementary information between two modalities

A. Khan and P. Maji, "Low-Rank Joint Subspace Construction for Cancer Subtype Discovery,’
IEEE/ACM Transactions on Computational Biology and Bioinformatics. (Accepted)
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